APPROXIMATE ANGLE FACTORS FOR
TWO-DIMENSIONAL PROBLEMS

S. P. Detkov and A, V. Vinogradov UDC 536.12
We have approximated the special Kip(x) functions used in formulas for radiation character-
istics. We have found the approximate intermediate functions for an isotropic incident flow

by means of which [2] many angle factors have been expressed.

§1, Introduction

Two-dimensional systems of bodies with an absorbing medium exhibit comparitively simple radiation
characteristics., For the isotropic radiation of surfaces, Mikk has examined the angle factors in a number
of papers [1-3]. Many of the factors are determined by means of the intermediate functions M, N;, N,,
and S,, and these in turn are expressed in terms of the tabulated Bessel functions and their integrals. The
radiation characteristics have been generalized in [4] for the axisymmetric indicatrix of effective surface
radiation, given by a series in cosines. The formulas have been simplified by using the special Kip(x)
functions in the place of the Bessel functions, Moreover, the above-cited reference enumerates most fully
the properties of the Kip functions., The difficulties are now reduced to the calculations of the Kin func-
tions, Tables of these functions are not readily accessible and they are limited.

To use an electronic digital computer, particularly machines of the Promin and Nairi types, the func-
tions must be approximated by simple formulas., Here we offer approximate Kiy functions whose deriva-
tives are intermediate functions, and we give important examples of the approximation of angle factors,

§2. Approximate Kip(x) Functions

The original formulas are taken in two variants:
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The integrals are replaced by quadrature formulas
Ki, () = Y a; exp (—by»). (2)
m
As the first approximation the coefficients @i and by are determined from the weights and nodes of the Gauss
quadrature. As a rule, the coefficients a; are then increased and simultaneously rounded off to satisfy the

equation

N 4 =Ki, (0) =V =T (v/2)/2T {(n + 1)/2].
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TABLE 1. Coefficients of the Then, by comparison with exact tables compiled for the interval 0

Binomial Functions Kiy(x) and < x =< 3 [5] we correct the coefficients b;, making use of the fact that
Their Maximum Errors in the they can be rounded off. We chose between formula (2) and the orig-
Interval 0 =x =3 inal formula (1), selecting the one which exhibits the smaller error.
- Tables 1 and 2 show the coefficients of (2) and the maximum errors
" o bi 8% (= in the interval 0 = x = 3. The trinomial formulas for n = 3-5 have
been derived from quadrinomial formulas, compiled on the basis of
3 8’?254 é'?g 0,34 (1) the same quadrature. One of the four terms is dropped, with the re-
4 0108667 1:9 0,13 (1) maining coefficients adjusted to fit. This method achieves minimum
0,58 1,068 |—0,08 (3) error, and its effectiveness increases in proportion to the increase in
5 8ng9 i’,ggs 0,12 (1.5) n. For larger orders of n the trinomial formulas should be derived

from pentanomial formulas, The smaller the terms that are dropped,
the easier the adjustment.

§3. Approximation of the Intermediate Functions

TABLE 2. Coefficients of the -
Trinomial Functions Kip(x) and The intermediate functions for the calculation of the angle fac-

Their Maximum Errors in the tors in the case of isotropic radiation of a surface have the form
Interval 0 <x =<3

M) == Kiy (9,

n a by 8% (%)
4 . ,
Ny(x) = P iKi, (x) — Ki; ()],
1 0,28 8,9 —0,8 (1
0.6 1,88 @ 4 . ,
0,6908 | 1,06 Ny (x) = = [Ki, (x) — Ki, (9],
s | e 8RS 1
0,32 , . . -
0.63 1,06  |—0.15 (0.7) S, (%) = 2E, (x) = | exp (— xt) £3dt,
0,24 (2) 0
SRR Y, ?
0,2 ) —0, s x) = — H A 2
0.5 1,04 0,16 (3) 2 (%) - S Ki; (x) T
4 0,0167 | 3 0,02 (0,1) o
0,17 1,4 —0,04 {0,3) . .
0,48 1,039 |—0,04 (2) All of these functions are also presented in the form
5 0,00505 3 _8’88 (g),s)
0,124 1,4 108 (
0,46 | 1,038 Y a; exp (—by).
6 0,2708 1,007 |—0,16 (1,5) m
0,2499 | 1,155
0,0126 | 2,168

For M, N;, and N, the coefficients gj and bj are determined, in first
approximation, from the coefficients of the functions Kip(x). The ad-
justment was subsequently carried out by comparing the results against the tabulated material [3]. Ina
number of instances the tables were quite detailed. The coefficients E;(x) in first approximation are taken
from the Gauss quadrature. The calculations for the function S, proved to be most difficulf. For this func-
tion, the first-approximation coefficients were also taken from the Gauss quadrature with m = 4. The in-
tegrand Ki; has been replaced by a binomial formula. The resulting sum of eight terms has been reduced
by half. The results are given in Table 3, Here we also find the interval with the error being investigated.
Beyond the limits of this interval, for the functions M and N, the last significant figure is confirmed in the
table [3]. The values of the quadrinomial function S, for x > 6 are markedly underestimated.

For arguments x = 1, 2 it is best to present the Kiy, functions in the form of a series. It was demon-
strated earlier [4] that the error in this case amounts to tenths of a percent. On the basis of the Ki, func-
tions, for 0 =x =1, 3, we have obtained

N, (9 = 34- _x —;xa + 21030793 x* — 0.055141 x* — 0.001454 £° — x2 11 x (0.5 — 0.022 3],
24 a4

3
S () =1—x+ —:—xz——( 0.25758 ——1—%5) X — (5.1 —2.5Inx) 10°3x5.

Each of these formulas gives a deviation of less than one in the fourth significant figure.
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TABLE 3. Coefficients of the Formulas Approximating the Inter-
mediate Functions

Function a by M%’ﬁ/; (exr)r or Test interval

M (x) 0,046 3,4 0,22 (1,5)
0,317 1,42 0,66 (5) 0<x<5
0,637 1,04

N, (x) 0,0144 15 —0,3 (0,3 0<x<l,b
0,127 3,07 0,17 (1)
0.21 1.5 —0.53 (1,5)
0,073 1,077

Ny (%) 0,36 8,5 —1,2 (0,1)

! 0.53 1.9 27(0,3) —

0,11 1,08 —1,3 (0.7)

S, (%) 0.2 2 0,05 (0,3)
0.8 0,75 —0.92 (1) 0Cx<?

1,9 @

S, (%) 0,035 0,206 —0,22 (0,2)
0,235 0,51 0,44 (1,3) 0L xL8
0,56 1,04 —~1,36 (4,5)
0,17 1,57 2,3 (6

§4, The Most Important Examples of Calculating

Angle Factors

a) The functions S,(x) and 2E3(x) have the sense of local and average angle factors for a circular cylin-
der and infinite parallel surfaces. M(x) is the local hemispherical angle factor for a circular cylinder and
a point at the center.

b) The average angle factor for the parallel faces of the beam is calculated [2] from the approxima-
tion formula

Qap— ‘V—l_(a—l;——};rw@gs (uh) -+ M (uh)],
where ¢y = gaAg whenu=0; gy =+V1 + h% —h; u = kA; h = H/A; A is the width of the sides; H is the distance
between the sides, k is the attenuation factor. Since the formula yields an underestimated result, we have
used a slightly overstated function E;(x) in the interval [0, 2], and namely, we assumedthatb, =8, by =1.123 (inthe
place of 8.6 and1.125). The results are compared with the table for ¢ AB, compiled from the exact formula
in [6]. For the region of variation in the arguments 0,05 = u = 2, 0.2 =h = 10 the formula yields under-
stated results. The maximum error is 2.6% for u=1, h = 0.5. For most numbers it amounts to tenths of a
percent, The error beyond the field of the table as u — 0 and h —0 must approach zero. This is remark-
able because in the integral for which the table was compiled [6], as h —0, there is a singularity which
markedly reduces the reliability of the result. The singularity does not yet show up in the field of the table,
We have noted a typographical error in the compilation of the table, For h = 3,5 and u=1.5, gap = 0.000271
instead of 0.0005.

¢) For the average angle factor for the perpendicular sides of the bar Mikk found the exact formula

1 4

Pac =5 [§;+N2(u|/ 1 +h2) — N, () _Nz(uh)] .

Calculations on the basis of this formula, using our approximate functions N,, were compared with the

table of {6], derived by numerical integration. If the function Ny(x) is taken in the form X ajexp bix) with
4

the coefficients from Table 3, over the entire field of the table from [6] (0.005=u = 2, 0.2 =h = 10 the er-
ror does not exceed 1.67%(u = 0.05, h = 0.8). In the overwhelming majority of cases (roughly, when uh

> 0.15) it is less than 0,5%. The use of formulas for Ny(x) from (3) yields good results, but in a limited
interval of argument {(roughly, when uh < 1-1, 2). Even here, the integral for which the table in [6] has
been compiled exhibits a singularity as h — 0, whereas both of the approximate formulas yield a guaranteed
result.

d) The local and average angle factors for the two coaxial cylinders are calculated [2] from the ap-
proximate formula
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Lt — 1) Mi(p — 1)1 + 2E51(o — )}

q>rR =
where p = R/r; r and R are the minor and major radii, multiplied by the attentuation factor. Data with
respect to the exact formula of [7] have been published for 1.05 <p = 3 and 0.1 =r < 5. Comparison shows
that on the whole, as p and r are increased, the error increases from hundredths to tenths of a percent.
Roughly, the inequality rp =< 4 limits the region with an error of 2%,

In conclusion, we note that in 1) all of the calculations have been performed on the Promin computer,
which functions with five digits and a floating decimal point (in a number of cases, there was noticeable
round-off error); 2) the cited method of approximate calculation can be used for numerous other coefficients,
including the coefficients for surfaces with nonisotropic axisymmetric radiation; 3) the error §; in the ap-
proximate formulas of Mikk, as a rule, was considerably lower than 3%. But is has been determined for
the transmission capacity. We have everywhere indicated the error in & for the values of the functions.

For angle factors & = 6,0, /¢, where ¢, is the coefficient for k = 0. When 6, = 1-2% the quantity & may
amount to tenths of a percent.

NOTATION
Kipx) denotes the special functions (1);
M, Ny, N,, and S, are intermediate functions, introduced in [1, 2];
Eq(x) is the integral exponential function of third order;
a; and b are the coefficients of the approximation polynomial;
r is the gamma function;
¢ and @, are the angle factors for a system with an absorbing and a transparent medium;
u = kA;
h = H/A;
Aand H are the width and the height of the beam;
k is the attenuation factor, m™l;
r and R are the radii, multiplied by the attenuation factor;
p =R/r.

Subscripts and Superscripts

AB denotes the coefficients for the parallel faces of the beam;
AC denotesthe coefficients for the perpendicular faces of the beam.
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